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1. Introduction

Urban traffic congestion is an increasingly urgent problem in cities across the globe. As
populations swell, urban centers densify, and car ownership becomes more accessible, the
pressure on existing road networks intensifies. From London to New York, and from Rome to
Singapore, metropolitan regions are facing mounting delays, environmental degradation, and
rising frustration among commuters. According to the INRIX Global Traffic Scorecard (INRIX,
2024) ,drivers in major cities lose dozens, sometimes over a hundred, hours per year idling in
traffic, and the total annual economic cost of congestion to urban economies runs into the
billions. In the United States alone, congestion was estimated to have cost $87 billion in wasted
time and fuel in 2018. (Weforum 2019) ,Yet despite decades of investment in public transit and

road infrastructure, congestion persists as a structural feature of urban life.

The consequences of congestion go beyond travel delays. Economically, it reduces productivity,
disrupts logistics, and inflates transportation costs for goods and services. Environmentally,
vehicle emissions contribute to poor air quality and elevated carbon dioxide levels, exacerbating
climate change and creating public health risks. Socially, congested roads increase noise
pollution, reduce walkability, and lead to the uneven distribution of opportunity, particularly
when low-income residents are priced out of housing near employment hubs and are forced into
long commutes. Traditional policy tools, such as expanding road capacity or offering more
public transit routes, have largely failed to address these problems sustainably. Many cities are
physically constrained and cannot afford to keep building more roads, and public transit

investments often take years to materialize and require complementary behavioral shifts.

Amid these challenges, congestion pricing has emerged as a policy mechanism that directly
tackles the root cause of traffic: the unpriced and over consumed road space during peak periods.
Inspired by economist William Vickrey’s theory of marginal cost pricing, congestion pricing
seeks to align individual drivers' decisions with the broader social cost of their travel. In essence,
it imposes a toll that reflects not only the private cost of driving (such as fuel or time) but also
the external costs imposed on others, namely increased congestion, air pollution, and delays. By
charging drivers for road use in high-demand areas or time periods, cities aim to reduce excess

vehicle volume, improve traffic flow, and promote more efficient and sustainable modes of



transportation. (Vickrey, 1969)

Over the past two decades, a number of cities have implemented congestion pricing programs,
with varying degrees of ambition and success. Singapore pioneered electronic road pricing in
1998 and is now transitioning to a satellite-based GNSS system capable of real-time distance-
and time-based charging. Stockholm adopted a cordon-based system with dynamic time-of-day
charges, first as a trial and then permanently after a successful referendum. London introduced a
flat congestion charge in 2003 and later extended it to include ultra-low emission zones. Milan’s
Area C zone adds environmental constraints to its pricing model, targeting emissions by
restricting vehicle types. Meanwhile, cities like New York and Rome have experienced delays or
public resistance, illustrating the political sensitivities and operational complexities involved.

(Lindsey, 2006)

What differentiates successful programs from those that struggle or fail is not merely the
presence of a charge but the design and implementation choices that shape how the policy works
in practice. Some cities employ dynamic pricing that adjusts with congestion levels; others rely
on flat rates. Some reinvest toll revenues into public transport to boost political legitimacy, while
others funnel them into general budgets, sparking concerns about equity and fairness. Still others
include vehicle-type exemptions or discount programs to address social justice concerns. These
design elements are not trivial details, they fundamentally determine whether a program achieves

its goals, maintains public support, and sustains long-term impact.

This paper aims to compare congestion pricing systems across major global cities, focusing on
how differences in their design and implementation influence their effectiveness. Effectiveness,
in this context, is defined using a broad, multidimensional framework. First, environmental
performance is evaluated through reductions in carbon emissions and improvements in air
quality. Second, traffic performance includes metrics like average vehicle speeds, travel time
reliability, and congestion levels. Third, public and political acceptance are considered, given
their importance in policy longevity and expansion. Fourth, revenue-related outcomes are
examined, including how pricing funds are allocated and whether they improve long-term
infrastructure or equity. Lastly, the analysis considers local business and urban livability impacts,

such as noise, nuisance, and economic activity in downtown areas.



By synthesizing case studies, evaluating outcome data, and applying economic theory, this paper
seeks to identify the features that make congestion pricing programs work, not just technically,
but politically and socially. The goal is to draw lessons from cities that have implemented these
policies successfully, while also understanding the limitations and pitfalls of less effective
attempts. Ultimately, this research aspires to offer practical guidance to policymakers considering
congestion pricing as a tool for managing urban transportation systems in a way that is efficient,

equitable, and sustainable.
2. Theoretical Background

2.1 Economic Theory of Congestion

At the heart of urban traffic congestion lies a fundamental market failure: the overuse of a scarce
public good, road space, due to the absence of appropriate pricing. When individuals decide to
drive, especially during peak hours, they consider only their private marginal costs, including
fuel, parking, tolls, and personal time lost in traffic. However, they fail to account for the
external costs they impose on other road users, such as increasing travel times, contributing to air
and noise pollution, and exacerbating health risks through vehicular emissions. This divergence
between private and social costs leads to inefficient outcomes, wherein roads become overused

and congested beyond the point that is optimal for society.

The theoretical framework for correcting this misallocation was first formalized by Nobel
laureate William Vickrey, who applied the concept of marginal cost pricing to urban
transportation. Vickrey proposed that in order to achieve an efficient level of road usage, each
driver should face a charge equal to the marginal social cost (MSC) of their trip, rather than just
their private costs. This idea is grounded in the earlier work of economist A.C. Pigou, who
argued that taxing goods which generate negative externalities could internalize social costs and
restore economic efficiency. In the context of congestion, the externality is the time delay that
each additional vehicle causes for all other drivers, which increases non-linearly as road usage

approaches capacity. (Vickrey, 1969)
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Figure 1.1: “Marginal Cost Pricing Framework for Road Congestion” (Song, 2013)

This concept is best understood graphically through a marginal cost pricing framework. As
shown in Figure 1, the number of trips (Q) is plotted on the horizontal axis, while the cost per
trip is shown on the vertical axis. The marginal private cost (C(Q)) curve reflects the costs borne
directly by the driver, fuel, time, and vehicle wear. However, this does not account for the
additional congestion delay imposed on others and other social costs - noise, pollution, etc. The
marginal social cost (MSC(Q)) curve lies above the private cost curve, diverging more steeply as

traffic volume increases, reflecting the growing external cost of delay per added vehicle.

Without pricing, the market equilibrium is reached at point G, where the private cost is equal to
the demand curve. However, this leads to overuse of road space and inefficient congestion. The
socially optimal level of traffic occurs at point D, where demand equals the full social cost. The
optimal toll t is the vertical distance between MSC and MPC at this point, representing the
marginal external cost. By charging this toll, policymakers can internalize the externality, reduce
traffic to an efficient level, and eliminate the deadweight loss, the shaded triangle DFG in the
figure that results from unpriced congestion. Drivers are the ones paying for this policy, so they
are "losing" in one sense: they lose some surplus and they pay the tax. Tax revenue is ABED,
and they also use the yellow triangle. This visual representation offers a foundational lens

through which modern congestion pricing strategies are derived.

The mathematical expression of marginal social cost further clarifies this logic. Let C represent

the average commuting cost per trip, which is itself a function of traffic volume Q. The total cost



to all commuters is then C(Q)- Q. The marginal social cost is the derivative of this total cost with

respect to traffic volume:
MSC = %QQ) —C(Q) + QZ—S = C(Q) + EC (Song, 2013)

This formula shows that the cost to society of one additional vehicle is not just the cost that
vehicle faces (the first term, C), but also the additional cost imposed on all other vehicles already
on the road (the second term, Q-dC/dQ). This second component is the external cost that needs
to be internalized through a congestion toll. Thus, the optimal congestion charge or Pigouvian

toll can be expressed as:
dC
1. ©= Q . %

This is the amount that, if charged to each driver, would reduce the volume of traffic to the point

where marginal benefit equals marginal social cost, thereby achieving allocative efficiency.

However, the theory says that pricing does work exactly as intended; the question is how well it
can work. This depends on elasticities. The behavioral response of drivers to tolls depends on the
elasticity of demand for driving. This elasticity determines how sensitive the volume of vehicle
trips is to changes in road costs. Demand elasticity can be captured by the slope of the demand
curve at a point; a steeper demand curve (more inelastic) means a larger tax will be needed to
change behavior. This determined how well the policy works. If demand is perfectly inelastic,
the number of cars on the road does not change, and they all pay the tax. If it is perfectly elastic,
there would be a massive response. When alternatives such as reliable public transport, cycling
infrastructure, or telecommuting options are available, the price elasticity of demand tends to be
higher, meaning that even a modest toll can lead to a significant reduction in traffic. Conversely,
in car-dependent urban environments with limited substitutes, demand for driving is relatively
inelastic, and tolls may need to be higher, or complemented by investment in transit

infrastructure, to produce a meaningful behavioral shift.

Elasticity also varies across time, demographic groups, and geographic areas. For instance,
evidence from Stockholm suggests that the elasticity of demand increased over time following

the implementation of congestion pricing, largely because of concurrent investments in public



transport and the public’s growing familiarity with alternative commuting patterns (Borjesson &
Kristoffersson, 2018). In contrast, Rome’s Eco Pass program failed to generate a substantial
response from drivers, in part due to weak enforcement and the absence of viable modal
substitutes (Russo et al., 2021). Singapore’s experience, however, provides a strong example of
responsive pricing aligned with elasticity, as its Electronic Road Pricing (ERP) system
dynamically adjusts tolls based on observed congestion levels, ensuring a continuous feedback

loop between traffic conditions and pricing levels (Theseira, 2020).

The theoretical insight here is not only that congestion pricing can reduce traffic volumes, but
that its design must be sensitive to demand conditions, available alternatives, and the institutional
capacity to measure and adjust prices in real time. Programs that rigidly apply flat tolls without
regard to demand variation, such as London’s initial implementation, risk losing effectiveness
over time as traffic patterns evolve. Moreover, understanding elasticity is crucial for equity
analysis: higher-income commuters may be less price-sensitive, raising concerns that tolls could
disproportionately burden lower-income drivers unless mitigated through targeted exemptions or

complementary public transport investments.

Taken together, Vickrey’s theory of marginal cost pricing, the concept of negative externalities,
and the elasticity of demand form a robust theoretical foundation for evaluating congestion
pricing systems. They provide both a normative benchmark, what an efficient system should
look like, and a set of analytical tools to assess how closely real-world programs align with that
ideal. In the sections that follow, this framework will be applied to examine the effectiveness of
congestion pricing programs across global cities, with particular attention to how each city’s

policy design reflects or diverges from these foundational economic principles.
2.2 The Lucas Critique and Policy Adaptation

A critical insight into the long-term limitations of congestion pricing design comes from a
foundational principle in economic policy analysis known as the Lucas critique. Introduced by
Nobel laureate Robert Lucas in 1976, the critique argues that policies cannot be reliably
evaluated based on historical correlations between variables if the policy itself changes the
underlying behavioral rules or expectations. In other words, the structural relationships between

economic variables are not stable when policy regimes change, because agents, individuals,



firms, or in this case, drivers, will adapt their behavior in anticipation of new incentives.

This has direct implications for congestion pricing programs, particularly those that rely on fixed
or static toll designs. For example, London’s original flat congestion charge was developed based
on observed traffic patterns and estimated behavioral responses from the early 2000s. While
initially successful in reducing central area traffic by up to 20%, its impact diminished over time.
Drivers adjusted to the new normal, some shifted their travel times, others absorbed the cost or
changed vehicles, and the flat toll, unresponsive to real-time traffic conditions, gradually lost
relevance. This illustrates the Lucas critique in action: when the environment changes, so do

people’s expectations and behaviors, rendering static models and fixed rules obsolete.

Programs like Singapore’s ERP system, by contrast, avoid this problem through adaptive,
data-driven tolling mechanisms. Rates are adjusted quarterly based on measured traffic speeds,
ensuring that pricing remains aligned with current congestion levels. This dynamic approach
effectively internalizes behavioral feedback: users know the system responds to aggregate travel
behavior, so their decisions today are informed by anticipated outcomes tomorrow. As such,
Singapore’s system reflects the Lucasian insight that policy must be forward-looking, not merely

reactive.

The Lucas critique challenges policymakers to move beyond reduced-form models that assume
stable relationships between price and behavior. In transport economics, this means designing
pricing systems that learn and evolve, incorporating real-time data, behavioral elasticity, and
even seasonal or demographic variation. Without this, even well-designed systems risk decaying

in effectiveness as the city, its infrastructure, and its population change around them.

Ultimately, the lesson is clear: effective congestion pricing requires not just smart design, but
adaptive intelligence. As urban environments and traveler expectations evolve, pricing
mechanisms must be recalibrated to reflect new realities. Ignoring this would be to violate one of

modern economics’ most enduring insights. (Hoover, n.d.)



3. Paradoxes in Transportation Economics

While congestion pricing is typically evaluated through the lens of marginal cost theory and
externalities, several paradoxes in transportation economics illustrate the nonlinear and
counterintuitive nature of traffic systems. These paradoxes challenge the simplistic assumption
that improving road infrastructure or increasing capacity will necessarily lead to smoother traffic
flows or reduced congestion. Instead, they demonstrate that, under certain conditions,
well-intentioned policies may lead to worsened outcomes, either by undermining public
transportation, intensifying congestion, or triggering new latent demand. Understanding these
paradoxes is critical for interpreting the long-run effectiveness of congestion pricing and for

designing urban mobility policies that avoid unintended consequences.
a) The Downs—Thomson Paradox

Formulated by Anthony Downs and later elaborated by John Thomson, the Downs—Thomson
Paradox posits that the quality of public transportation and private driving are interdependent.
Specifically, it suggests that improvements in road infrastructure that make driving more
attractive may, paradoxically, increase congestion in the long term by degrading public transport
systems. If more commuters shift from buses or trains to private cars, the demand for public
transit falls, which may reduce service frequency, funding, and political support for investment.
Over time, this can lead to a self-reinforcing cycle where driving becomes the default mode,

transit deteriorates further, and congestion worsens.

This paradox helps explain why urban policies that prioritize road expansion without enhancing
transit alternatives often fail to alleviate congestion sustainably. In contrast, congestion pricing
can reverse the dynamic, making driving less attractive during peak hours and nudging
commuters toward public transportation. Successful examples of this effect include Stockholm
and Singapore, where congestion charges were implemented alongside targeted investment in
public transit systems. These cities saw not only reduced vehicle volumes but also increases in
transit ridership, demonstrating how pricing and infrastructure must be integrated to avoid the

pitfalls described by the Downs—Thomson Paradox.
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b) The Braess Paradox

The Braess Paradox, introduced by German mathematician Dietrich Braess in 1968, offers an
even more surprising insight: adding capacity to a road network can increase overall congestion.
This occurs when drivers, acting independently to minimize their own travel time, redistribute
themselves across the network in a way that worsens total traffic conditions for everyone. In
certain network configurations, the addition of a new road segment creates a new equilibrium
that is less efficient than the previous one. Each driver may experience longer travel times

despite the apparent increase in capacity.

Empirical demonstrations of the Braess Paradox have been documented in cities like Seoul,
where the closure of the Cheonggyecheon Freeway led to an unexpected improvement in traffic
flow. Similarly, computer simulations show that when road users rely solely on individual
optimization, the network can converge on a collectively suboptimal pattern. The paradox serves
as a cautionary tale: supply-side solutions to congestion (such as building new roads) may
backfire unless they are accompanied by demand-side interventions, such as congestion pricing
or traffic flow control. These findings underscore the importance of coordinated planning and
pricing mechanisms, particularly in urban networks with high volumes and complex routing

behavior.
¢) Induced Demand

The concept of induced demand, closely related to the Downs—Thomson Paradox but broader in
scope, refers to the phenomenon whereby increasing road capacity leads to more traffic, not less.
When new lanes or highways are added, the initial reduction in congestion lowers the perceived
cost of driving. In response, individuals who previously avoided driving due to traffic conditions
may now choose to drive, shift to longer routes, or take trips they would not have otherwise
made. Additionally, land use patterns may shift as people move further from city centers,
assuming they can commute more easily, thus embedding car dependence more deeply into the

urban fabric.

Studies from the U.S. and Europe have consistently shown that road expansion projects often fail

to reduce congestion in the long term. A frequently cited example is the expansion of the Katy
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Freeway in Houston, Texas, the widest freeway in North America, which saw increased
commute times despite a multibillion-dollar widening effort. The economic insight here is that
road space behaves like a typical good: when its price is effectively zero (i.e., no tolls or usage
fees), increasing its supply simply encourages higher consumption. Only by introducing price
signals, as in congestion pricing, can cities manage demand and prevent the cycle of induced

traffic growth.

From a theoretical standpoint, induced demand undermines the assumption of a fixed demand
curve for travel. Instead, it suggests that traffic demand is elastic with respect to perceived travel
cost, including both time and money. This insight reinforces the value of congestion pricing,
which directly addresses the cost side of the equation rather than attempting to expand supply.
Dynamic pricing models, such as Singapore’s ERP or Stockholm’s time-sensitive cordon
charges, offer mechanisms for controlling induced demand by adjusting tolls to reflect real-time

congestion levels, thereby keeping total traffic volumes within sustainable limits.
4. Case Study Overview: Programs in Global Cities

This section presents a detailed analysis of congestion pricing programs in eight global cities.
Each case captures the nuances of design, enforcement technology, toll structure, political
trajectory, and the broader policy environment within which the system operated. These case
studies not only reveal diverse pathways toward implementation but also underscore the critical

importance of contextual adaptation in shaping long-term effectiveness.

Singapore

Singapore’s congestion pricing journey is the most advanced and longitudinally studied in the
world, beginning with the Area Licensing Scheme (ALS) in 1975. The ALS required vehicles
entering the Central Business District (CBD) during peak hours to display a paid paper license. It
achieved immediate success by reducing traffic volumes by 44%, but over time its rigidity, lack

of time differentiation and inability to adapt dynamically, led to congestion re-emerging.

In 1998, the ALS was replaced with the Electronic Road Pricing (ERP) system, a global first in
dynamic tolling. ERP charges vary by location, vehicle type, and time of day, and are adjusted
quarterly by the Land Transport Authority (LTA) based on observed traffic speeds. Gantry-based

12



infrastructure communicates with in-vehicle units to deduct tolls seamlessly. The ERP aims to
maintain optimal traffic flow speeds: 20-30 km/h on arterial roads and 45-65 km/h on

expressways.

The program is embedded within a broader urban mobility strategy, including strict car
ownership controls (e.g., Certificate of Entitlement auctions), heavy public transit investment,
and strategic land use planning. According to Theseira (2020), Singapore’s success lies in
continuous iteration, transparent governance, and aligning public incentives with system goals.
Public resistance, while present initially, was mitigated by high institutional trust and visible
performance gains. The upcoming ERP 2.0, a satellite-based system enabling distance-based
charging, exemplifies Singapore’s commitment to dynamic, equitable pricing, and urban

efficiency.
London

The London Congestion Charge, launched in February 2003, was Europe’s first large-scale urban
pricing initiative in the modern era. It covered an 8-square-mile area of Central London and
applied a flat £5 daily fee, enforced via Automatic Number Plate Recognition (ANPR) cameras.
Vehicles entering the zone between 7:00 am and 6:30 pm on weekdays were required to pay or

face fines. By 2020, the charge had risen to £15, but the flat-rate model remained.

According to Leape (2006), the system achieved rapid success: traffic entering the zone
decreased by 15%, congestion (measured by excess delay) fell by 30%, and bus reliability
improved. Revenue was ring-fenced for public transport improvements, including 300 new
buses. However, political support was uneven and waned over time as private hire vehicles,

exempt from the charge, proliferated, offsetting earlier gains.

Long-term criticism focused on static pricing (no time-of-day differentiation), exemption
policies, and limited geographic scope. A lack of real-time responsiveness led to re-congestion.
Nonetheless, London’s system provided a globally visible proof of concept for congestion
pricing in a Western democracy. More recent iterations, like the Ultra Low Emission Zone

(ULEZ), reflect a shift toward combining congestion and environmental goals.

Milan
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Milan’s congestion pricing scheme evolved through two phases. The first, Ecopass, was
introduced in 2008 as an emissions-based charging regime targeting polluting vehicles. It
achieved modest reductions in traffic (~6%) but was undermined by broad exemptions, lack of

enforcement consistency, and limited coverage.

In 2012, Ecopass was replaced by Area C, a stricter congestion pricing and emissions control
system. Vehicles entering the 8.2 km? city center during business hours are monitored via ANPR
and subject to a €5 entry charge, with free entry only for low-emission vehicles, electric cars, and
certain residents. Area C also introduced a complete ban on high-emission diesel vehicles,

creating a dual mechanism of pricing and exclusion.

Moulin and Urbano (2025) note that Area C led to a 30% reduction in car traffic, a 17% decline
in PM10 emissions, and a measurable shift toward public and active transport. Milan also
observed gender and age-specific effects: younger drivers adapted more rapidly to restrictions,
while older and lower-income commuters were less flexible. Public support grew with
environmental improvements, but critics raised concerns about the burden on small businesses
and delivery logistics. The Milan model demonstrates the power of combining emissions-based
bans with pricing and indicates the potential of such systems to achieve co-benefits in public

health and urban sustainability.
Stockholm

Stockholm's congestion pricing was implemented in two stages: an initial seven-month trial in
2006, followed by a binding referendum, and permanent reinstatement in August 2007. The
system uses a time-varying, cordon-based model, charging between SEK 10 and 20 per passage
into or out of the inner city between 6:30 am and 6:30 pm on weekdays. Charges are capped at

SEK 60 per day.

Eliasson (2014) highlights Stockholm’s political innovation: the use of a trial period combined
with robust data collection and real-time evaluation created a fact-based public discourse. Early
results showed 22% traffic reduction, increased transit ridership, and 15% cuts in NOx and

PM10 levels. Public acceptance increased from 30% pre-trial to 53% post-trial.

14



Stockholm’s program has shown enduring effectiveness due to price responsiveness and adaptive
design. Borjesson (2018) emphasizes that over time, elasticity of demand increased as
commuters adjusted work hours, switched modes, or avoided trips. Revenue is earmarked for
public transport and infrastructure, bolstering legitimacy. The Stockholm model exemplifies how
evidence-based policymaking, transparent trial periods, and reinvestment strategies can turn a

politically divisive proposal into a durable success.
Gothenburg

Gothenburg adopted a congestion tax in January 2013, largely modeled on Stockholm’s
framework. It applies time-differentiated charges at gantries encircling the city center, with
prices ranging from SEK 8 to SEK 18 per crossing, capped daily. Although technologically
similar to Stockholm, Gothenburg’s experience diverged sharply in public and political

reception.

Unlike Stockholm, the Gothenburg system lacked a trial period or referendum prior to
implementation. Borjesson (2018) finds that it was perceived as imposed from above, driven
more by infrastructure funding goals than congestion relief. A non-binding referendum in 2013

showed 57% opposition, but the system remained in place.

Traffic reductions were modest (~9%) and quickly dissipated. Public transport improvements
were minimal, and perceived benefits remained unclear. The system's failure to build public
legitimacy, combined with weaker alternatives to car travel, resulted in declining political
support and lower compliance over time. Gothenburg demonstrates how lack of procedural
legitimacy, insufficient co-benefits, and weak public transit can significantly reduce the

long-term efficacy of congestion pricing.
New York City (2025)

New York City launched its long-delayed congestion pricing program in January 2025, charging
drivers entering Manhattan below 60th Street a $9 peak-hour toll, with differentials for trucks
and off-peak travel. The system uses a fully automated license plate recognition infrastructure,

coordinated by the MTA and city Department of Transportation.
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Cook et al. (2025) used synthetic control methodology to estimate the program's short-run
effects, finding a 15% increase in average traffic speeds, 8% improvement in travel time
reliability, and early signs of reduced emissions. Importantly, New York’s system is projected to

generate $1 billion annually, earmarked exclusively for transit upgrades.

Years of political gridlock had blocked previous proposals, with opponents citing regressive
impacts on outer-borough commuters. The eventual success was due to careful
coalition-building, legislative action at the state level, and rising public awareness of climate and
infrastructure crises. The NYC program is unique in its integration of environmental, equity, and
funding objectives, and its future effectiveness will hinge on transparent reinvestment and

continual price recalibration.
Rome

Rome’s Eco Pass and Limited Traffic Zone (ZTL), launched in 2001, targeted emissions and
congestion in the city’s historic core. Unlike pricing models, access was restricted via
permit-based controls and vehicle bans during peak hours. Enforcement was camera-based, but

loopholes, inconsistent application, and political ambivalence rendered the system ineffective.

Russo et al. (2021) find that traffic levels remained essentially unchanged, air quality
improvements were negligible, and behavioral adaptation was limited. The ZTL became widely
perceived as inequitable, granting access to residents and certain business classes while
penalizing others. Rome's experience illustrates that without robust enforcement, pricing
incentives, or supportive infrastructure, access control alone is insufficient to produce lasting

results.
San Diego

San Diego’s I-15 HOT lane system, launched in 1998, operates as a dynamic pricing corridor
within a major highway. Solo drivers can pay to access previously HOV-only lanes, with tolls
adjusting every six minutes based on real-time congestion levels. Revenue is collected via

in-vehicle transponders and used to fund express bus services.
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Bhatt (2011) classifies San Diego’s HOT lane as a successful demonstration of real-time
congestion management without large-scale structural change. The system preserved HOV lane
speeds even during peak hours and expanded modal options. However, criticism has centered on
equity concerns, with some branding the lanes as “Lexus lanes” due to perceived exclusivity.
Still, surveys indicated general user satisfaction and strong performance outcomes in throughput

and revenue generation.
5. Comparative Analysis & Synthesis

To systematically evaluate the variation in design and effectiveness across global congestion
pricing programs, this section synthesizes key features of eight case studies into a comparative
matrix. This matrix facilitates a high-level but structured comparison, allowing for both
qualitative interpretation and preliminary quantitative exploration. It captures dimensions central
to both the policy design and implementation logic of each program, namely pricing structure,
dynamism, enforcement method, scope of exemptions, fiscal reinvestment strategies, and

observed outcomes.

The data presented in the table below were compiled through a close reading of primary
academic evaluations and government reports for each city. Prices were normalized to USD
where available, although absolute price levels are only partially informative due to income and
cost-of-living differences. More analytically important are whether the tolls are dynamic or
static, whether enforcement technologies allow for scalable and real-time pricing, and how
revenues are allocated, either to general budgets, as in London, or toward public transportation
reinvestment, as in Singapore and Stockholm. The “Key Outcome” column synthesizes
measurable program impacts, including changes in traffic volume, travel speeds, emissions, and

public or political sustainability over time.
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Price Collection

City (USD) |[Dynamic? (Method Exemptions Revenue Use

Singapo ($0.50-5.0 ERP (tag & Public

re 0 'Yes gantry) Minimal transport
Camera General city

London [$18/day [No (ANPR) EVs, disabled budget
Camera Low-emission  |[Environmenta

Milan  [$5.50 Partial (ANPR) cars | fund

Stockhol|$1.00-2.0 Camera Emergency Transit

m 0 'Yes (gantries) vehicles investment

Gothenb [$0.80-1.8 Camera Infrastructure

urg 0 Yes (gantries) Residents, others [fund

New MTA capital

York  [$9-23  [Partial Camera (LPR) [Taxis, overnight [plan
Permit-based [Residents, None (poorly

Rome [N/A No (ZTL) undefined tracked)

San Transponder + Express  bus

Diego [Varies |Yes signs HOV, buses funding

Table 5.1a: “Design and Operational Features of Congestion Pricing Programs in Major

Cities”
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City Key Outcome

Long-term reduction in congestion; consistent compliance; strong public transport

Singapore [use

London [Initial success (15-20% reduction), but decline over time due to static pricing

Milan Sustained PM;o and CO, emission cuts; reduction in central traffic by 30%

Stockholm |Broad traffic and air quality benefits; high public support; politically durable

Gothenbur

I Modest emission reductions; faced local opposition

New York [Not yet implemented; modeled projections indicate up to 15% traffic reduction

Rome Limited impact due to enforcement failure; minimal public support

San Diego [HOT lanes favored by wealthier users; equity concerns

Table 5.2a: “Observed Outcomes of Congestion Pricing Programs” By reducing these diverse
systems into comparable feature sets, the matrix serves as a foundation for multi-dimensional
analysis. For example, it becomes immediately evident that cities with dynamic pricing models
(Singapore, Stockholm, San Diego) tend to exhibit more favorable outcomes, both in sustained
traffic reductions and in long-term public acceptance. Conversely, systems relying on flat fees
(London) or non-pricing access controls (Rome) often struggle with declining effectiveness or
political legitimacy over time. Furthermore, where revenues are reinvested into public transit or
transport infrastructure, the political sustainability and redistributive justification of the tolls

appear significantly stronger.
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Each city was scored across these 5 categories on a scale of 1-5 (e.g., 1 = poor, 5 = excellent),

then weighted and averaged to produce a final rounded effectiveness score

Category Weight Score Range
Congestion reduction 30% 1-5
Environmental impact 20% 1-5
Revenue reinvestment 20% 1-5

Political/public acceptance 15% 1-5
Institutional design 15% 1-5

Table 5.3a: “effectiveness score” criteria

Price Level vs Effectiveness Score

Singapore

London

Milan

Effectiveness Score

Stockholm L
> ]
fn
g - 3
Gothenburg - 4
5
New York
Rome
San Diego
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Average Daily Price (USD)

Figure 5.1a : “Price Level vs Effectiveness Score”

Figure 5.1a titled “Price Level vs Effectiveness Score” provides a visual comparison of average
daily congestion tolls (in USD) against a qualitative effectiveness score, ranging from 1 to 5, for

eight major congestion pricing programs worldwide. The purpose of this visualization is to
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examine whether there is a consistent relationship between the monetary magnitude of the toll

and the overall success of the program.

At first glance, one might expect higher tolls to yield greater congestion reduction or emissions
benefits. However, the graph reveals that no strong linear relationship exists between toll price
and program effectiveness. For instance, Singapore and Stockholm, two of the most effective
systems globally, achieve their success with moderately priced tolls, averaging approximately
USD $2.75 and $1.50 respectively. Both cities score 5/5 on the effectiveness scale, reflecting
their sustained reductions in vehicle volumes, adaptive tolling mechanisms, and strong public

transport reinvestment strategies.

In contrast, London imposes one of the highest tolls at approximately USD $18 per day, yet earns
a lower effectiveness score of 3/5. While the London Congestion Charge achieved significant
improvements in its early years (notably a 30% reduction in congestion and better bus
performance), its static pricing model, growing list of exemptions (especially for private hire
vehicles), and diversion of revenues into general funds have all contributed to a long-term
decline in impact. This suggests that toll design and revenue allocation may be more critical than

sheer price level.

The case of Rome further underscores this point. Despite having no monetary toll at all, relying
instead on a permit-based Limited Traffic Zone (ZTL), the program earns the lowest score of 1/5
due to poor enforcement, unclear exemptions, and negligible behavioral change. On the other
end of the spectrum, San Diego’s HOT lane tolls, though modest and dynamic, achieve a
mid-range effectiveness score (3/5) within their limited geographic scope, primarily by

maintaining HOV lane speed and reliability.

Taken together, the data suggest a U-shaped relationship, in which both very low and very high
toll levels correlate with weaker performance, while mid-range, demand-calibrated tolls are
associated with stronger outcomes. Cities that deploy dynamic pricing, invest revenues in public
transport, and engage in institutional adaptation tend to perform better, regardless of whether the
toll is $2 or $20. This conclusion aligns with economic theory: congestion pricing is not simply
about making driving expensive, it is about correctly internalizing externalities and providing

realistic, equitable alternatives to private car use.
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Binary Feature Heatmap (1 = Feature Present, 0 = Absent)
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Figure 5.2a : “Policy Feature Heatmap: Dynamic Pricing, Technology, Equity, and

Reinvestment”

The binary feature heatmap presents a visual comparison of whether key congestion pricing
design elements are present across eight global cities, with each feature, dynamic pricing,
advanced technology, transit reinvestment, and equity/exemption fairness, coded as either 1
(present) or O (absent). Cities like Singapore and Stockholm display full feature coverage,
aligning with their high effectiveness scores, while Rome shows none of the core features,
reflecting its program’s failure. The heatmap clearly illustrates that the most successful programs
tend to integrate multiple complementary design elements, suggesting that policy coherence,
rather than any single feature, is critical to long-term effectiveness and public legitimacy. This
heatmap helps further understand the basis on which each country's effectiveness score was

calculated and the criteria used.

5.1 Policy Mechanics in Practice: A Thematic Deconstruction of Congestion Pricing
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Systems

i. Pricing Structure: Flat vs. Dynamic Tolls

One of the most central design variables in congestion pricing is the toll structure specifically,
whether the pricing is flat or dynamic. Flat tolls apply a single rate to all users, regardless of the
time of day or the level of congestion. This model is administratively simple and was the
approach used in early programs such as the London Congestion Charge, which initially charged
£5 per day in 2003, later increasing to £15. However, flat tolls have a major limitation: they
cannot efficiently ration access during peak times, nor do they reflect the marginal external cost
imposed by each additional driver. As a result, while flat tolls may initially reduce traffic
volumes, as observed in London’s early years, they often lose effectiveness over time. Leape
(2006) documented a decline in London’s performance as behavioral adaptation, increased
exemptions (such as for private hire vehicles), and the absence of price variation led to the

re-emergence of congestion.

In contrast, dynamic pricing adjusts tolls based on time of day or real-time congestion levels, and
is designed to internalize externalities according to economic theory. William Vickrey, the Nobel
laureate and pioneer of congestion pricing theory, proposed that the optimal toll should equal the

marginal external cost a driver imposes on others. Mathematically, this is represented by:

dc
T*: Q .W

where T+ is the optimal toll, Q is the volume of traffic, and Z—g is the derivative of average travel

cost with respect to traffic volume, which captures the congestion externality. This formulation
appears in Song (2012), Congestion Pricing: The Theory, published by the Transport Studies
Unit at Oxford (https://www.tsu.ox.ac.uk/pubs/1023-song.pdf).

Singapore’s Electronic Road Pricing (ERP) system follows this principle closely. It is dynamic,
adjusting quarterly based on traffic speeds to maintain optimal flow conditions. Theseira (2020)
reports that ERP has sustained traffic speed ranges of 20-30 km/h in arterial roads and 45-65
km/h on expressways, targets set by the Land Transport Authority (LTA). Stockholm also

employs dynamic pricing, with charges varying by time of day and direction of travel, producing
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a sustained 20-25% reduction in vehicle entries to the city center (Eliasson, 2014). In summary,
dynamic pricing is not only more economically efficient according to Vickrey’s theory, but also

empirically more effective at long-term congestion management than flat tolls

To enable meaningful cross-city comparisons of congestion pricing revenue, I compiled the most
recently published nominal annual revenue figures for each of the eight cities in our study
(excluding New York, which launched its program in 2025). These nominal revenue values were

then converted to real 2025 USD values to adjust for inflation, using the following formula:

CPI

year

cPI
Real Revenue,y,s= Nominal value x (ﬂ)

where:

e Nominal Revenue is the reported revenue in USD at the time of publication,
e CPI,, is the Consumer Price Index of the year when the revenue was recorded,
® (Pl,,; is the projected CPI for 2025 (we use 320.0 as the base for U.S. dollars).

For example, London’s nominal revenue of $300 million in 2022 is adjusted as follows:

320.0
292.7

Real Revenue,;,s = 300 X ( ) ~ 328.2 million USD

To standardize the measure across cities of different population sizes, we also computed per

capita congestion pricing revenue using the formula:

Per Capita Revenue = ( City Population, _

Nominal Revenue )

For instance, if Milan reported $22 million in nominal revenue in 2019 and had a population of
approximately 1.38 million in that year, then:

22,000,000

1,380,000 =159 USD

Per Capita Revenue =
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By adjusting for inflation and controlling for population size in the relevant year, this

methodology allows for a consistent and accurate comparison of the fiscal scale of congestion

pricing across different urban contexts. This harmonized dataset supports later regression

analysis and policy evaluation

:E)ﬁy_ _____ N BFnﬁlgljR_e;eﬁae]iﬁiEn_ “Ve}r_"“?’apilat_io_n“()_IJI__Y_e_al_ __6PT_50_2§"ﬁe_a[ﬁ_érgnﬁgﬂﬁli_oﬁiﬁfs_ Per_Capita_Revenue_Nominal  |Per_Capita_Revenue_Real —Pﬁc_irngt_ru_cﬂfe_}
!Singapore 158 2019 5639000 [255.7 320 197.73 28.02 35.07 Dynamic I
|iLondon 300 2022 8982000 |292.7 320 327.98 3340 36.52 Flat i
IiMilan 2 2019 1380000  |255.7 320 27.53 15.94 19.95 Flat I
:Stockholm %0 2022 975000  [292.7 320 98.39 82.31 100,82 Flat :
IGothenburg 100 2021 579000 271 320 118.08 11 203.94 Flat l
JRome 5 2012 2873000 |2296 320 6.97 174 243 none |
San Diego |28 2020 1424000  |258.8 320 3462 19.66 2431 HOT lane i
Pewvork s ] s fwsooono_ | [ ] o] we___________lew [Dyramic_____}

Table 5.1b: “Standardized Fiscal Metrics of Congestion Pricing Programs (2025 USD)”
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Average Per Capita Revenue Raised by Pricing Structure (Real USD, 2025)
90.33
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Dynamic HOT lane

Figure 5.1b : "Average Per Capita Revenue Raised by Pricing Structure (Real USD, 2025)"

Figure 5.1b compares the average real per capita revenue (adjusted to 2025 USD) collected
through congestion pricing under three distinct pricing structures: Flat, Dynamic/Partial, and
others (None and HOT lane). By normalizing for population and adjusting for inflation, the chart
provides a clear measure of how efficiently each pricing model translates into revenue on a

per-resident basis.

Cities employing Dynamic or Partial pricing systems, including Singapore, Milan, Stockholm,
Gothenburg, New York, and San Diego, raise an average of USD 72.7 per capita, significantly
outperforming the Flat pricing model (London), which yields USD 36.52 per capita. This pattern

contrasts with raw revenue totals, where London had appeared dominant.

The higher per capita returns from dynamic systems can be attributed to their ability to calibrate
tolls in response to real-time congestion levels, peak hours, and vehicle type, and to apply
targeted exemptions. These systems more closely reflect marginal social costs, making them
more aligned with economic efficiency principles. For example, Gothenburg and Stockholm
charge variable rates and reinvest heavily in public infrastructure, producing strong per capita

returns.
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The chart also includes cities with “None” (Rome) and “HOT lane” (San Diego) classifications.
“None” indicates no formal congestion pricing scheme, resulting in minimal per capita revenue
(USD 2.43). “HOT lane” (High-Occupancy Toll lane), used in San Diego, allows
single-occupancy vehicles to use HOV lanes for a fee. While limited in geographic scope, it still
generated USD 24.31 per capita, suggesting targeted pricing on specific corridors can still

contribute meaningfully when well-implemented.

In sum, this comparison reveals that dynamic and hybrid models not only enhance behavioral
responsiveness and equity but also outperform flat systems on a per-resident fiscal basis, offering
both policy flexibility and greater alignment with congestion pricing’s foundational economic

theory.

ii. Technology: Camera, ERP, and GNSS

Technological infrastructure plays a foundational role in determining what kind of toll structure a
city can deploy and how reliably it can be enforced. The majority of early systems, including
those in London, Milan, and Stockholm, use Automatic Number Plate Recognition (ANPR)
cameras mounted on gantries to detect vehicle entries into toll zones. These systems are
sufficient for enforcing flat or time-of-day based cordon charges, but are limited when it comes

to more granular pricing based on distance traveled or real-time traffic flow.

The vehicle passes on the
level of the camera which
records the number plate
and the specific time of the

passage [
NN

o The computer

e The ANPR cameras calculates the

transmit the data to average speed.

ﬁ a computer = In the event of
25—

excess, an

(’(/ \// traffic fine
is send

It passes in front of a
second camera which again
read the number plate

and specific time

Figure 5.2b: “Automatic Number Plate Recognition system working (“ANPR Tool”)”
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Singapore’s ERP system introduced a significant leap forward by combining in-vehicle units
with gantry detection, allowing for real-time deduction of tolls based on vehicle location and
time. The system’s effectiveness relies on its capacity to collect charges at a fine resolution,
enforcing the pricing of entry into and movement within highly congested corridors. ERP is now
transitioning into ERP 2.0, a satellite-based (GNSS) platform that will track vehicles
continuously and allow for charging based on distance, time, and location. This level of precision
facilitates a theoretically ideal pricing scheme that mirrors Vickrey’s marginal cost model
continuously across space and time. As noted in Theseira (2020), the move to GNSS allows for

seamless road pricing across the entire city network without fixed physical gantries, significantly

enhancing scalability and pricing efficiency.

Figure 5.3b : “Singapore Electronic Road Pricing System (Ministry of Transport)”

GNSS-Based Congestion Pricing System
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Figure 5.4b: “GNSS based congestion pricing system”
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Mathematically, this system enables integration of temporal pricing via:

t
1

Toll,= [ T(x (b), )dt

&

where xl_(t) is the position of vehicle 1 at time t, and 1(x,t) is the congestion toll as a function of

location and time. This framework allows for fully flexible pricing structures that can account for
varying demand conditions, pollution levels, or road types. By comparison, ANPR systems are
inherently more rigid and require predefined entry points, limiting policy adaptability. The
technological sophistication of ERP and upcoming GNSS pricing platforms in Singapore
demonstrate the potential for achieving both operational efficiency and economic optimality in
congestion pricing. This was adapted from the general form of dynamic marginal cost pricing in
transportation networks, which is rooted in the work of William Vickrey and extended in modern
transportation economics literature (e.g., Small & Verhoef, 2007; Arnott, de Palma, & Lindsey,
1993). While the original works from Vickrey did not express it in this exact integral form, this
equation is a standard continuous-time representation of toll accumulation for vehicles in

GNSS-enabled systems and is widely used in modeling literature.
How to interpret the equation:
Here, t, is the time the trip begins, and t, is the time it ends. The function T(xi(t), t) represents

the toll rate at each moment, it depends on the vehicle’s location xl,(t) and the time t, since tolls

can vary based on where and when you are driving (like higher rates during rush hour or in busy
downtown areas). The integral sign | means we’re adding up all the small toll amounts over the
entire duration of the trip. So, this equation adds up the toll rate at each instant of time, based on
the vehicle’s position and time, to find the total toll charged for the trip. It’s how satellite-based
toll systems (like Singapore’s ERP 2.0) calculate charges continuously, rather than at fixed entry

points.
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Average Per Capita Revenue Raised by Technology Level
99.7

Average Per Capita Revenue (USD)
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Technology Level

Figure 5.5b: "Average Per Capita Revenue Raised by Technology Level"

Figure 5.5b illustrates the average per capita revenue raised by cities using advanced versus
basic congestion pricing technologies. Cities categorized under advanced technology, such as
Singapore, Stockholm, Gothenburg, and New York, employ sophisticated systems like real-time
dynamic pricing, automatic number plate recognition (ANPR), and integrated mobility data.

These cities generate an average of $99.7 per person, adjusted to 2025 dollars.

In contrast, cities with basic technology implementations, including London, Milan, Rome, and
San Diego, rely on simpler mechanisms such as flat tolling, manual enforcement, or limited data

integration. These cities average only $20.8 per person annually in real terms.

This stark contrast underscores the role of technology not only in enforcement and operational
efficiency but also in maximizing fiscal returns from congestion pricing. Advanced systems
allow for more granular price discrimination, better compliance, and lower leakage, leading to
higher per-user revenue collection. Additionally, such systems often support more equitable and

flexible designs, making them more adaptable to changing urban mobility needs.

By prioritizing technological investment, cities may thus unlock greater financial sustainability

while achieving broader policy goals related to traffic reduction, air quality, and urban equity.
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iii. Area Design: Cordon, Zone, and HOT Lanes

The configuration of a congestion pricing scheme, whether cordon-based, zone-based, or limited
to high-occupancy toll (HOT) lanes, has significant implications for both policy effectiveness
and equity. Cordon pricing, as used in London, Singapore, Stockholm, and New York City
(2025), applies charges to vehicles entering or crossing a defined geographic boundary. This
approach is operationally straightforward and effective at targeting high-density urban cores,
where congestion is most severe. According to Borjesson and Kristoffersson (2018),
Stockholm’s cordon system reduced vehicle entries by 22% during the trial phase, and the

benefits persisted years later.

Zone-based pricing systems, such as Milan’s Area C, apply charges across a wider interior area
with multiple points of access. These schemes often layer in emissions-based vehicle restrictions
and can address both congestion and environmental objectives simultaneously. Milan’s program,
detailed in Moulin and Urbano (2025), led to a 30% reduction in traffic within the zone and a
17% reduction in PM10 levels.

In contrast, HOT lanes, as implemented in San Diego’s I-15 corridor, offer congestion pricing on
a single highway segment, allowing solo drivers to pay for access to high-speed lanes previously
reserved for carpools. These systems are politically attractive because they preserve a “free”
alternative, but they do not reduce overall traffic volumes. Bhatt (2011) reports that HOT lanes
maintained high travel speeds and generated useful revenue for express bus services, but had
limited effects on total congestion. As a result, while HOT lanes demonstrate demand
responsiveness, their narrow scope limits their systemic impact. Cordon and zone systems, by
contrast, are more likely to produce widespread behavioral change and system-wide

improvements in travel conditions.
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City Area Design  [Traffic Reduction (%) [Notes

Singapore [Cordon ~20% From ERP zone reports (Theseira, 2020)
London Cordon ~15% (initial) Leape (2006); later decreased

Milan Zone ~30% Moulin & Urbano (2025)

Stockholm [Cordon ~22% Eliasson (2014)

Gothenburg [Cordon ~10% Borjesson & Kristoffersson (2018)

New York |Cordon Projected 17% Cook et al. (2025)

San Diego [HOT Lane <5% citywide Bhatt (2011)

Rome None ~0% Russo et al. (2021)

Table 5.2b: Traffic Reduction by City
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35 Average Traffic Reduction by Area Design Type
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Figure 5.6b: “Average traffic reduction by area design type”

Figure 5.6b compares average traffic reduction across different area design types in congestion

pricing systems:

- Zone-based design (Milan) leads with the highest average reduction, achieving 30%

traffic decline within its restricted area.

- Cordon pricing models (Singapore, London, Stockholm, New York, Gothenburg) deliver
an average traffic reduction of approximately 17%, making them effective at targeting

congestion in central zones.

- HOT lane systems (like San Diego), which only price a single corridor rather than a
whole area, yield minimal overall reduction, about 3%, mostly confined to the priced

lane.

This chart demonstrates that zone and cordon systems produce far more meaningful reductions in
traffic volumes than HOT-lane approaches, reinforcing the argument that comprehensive pricing

designs are key to urban mobility transformation.
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35, Average Traffic Reduction by Revenue Reinvestment Strategy
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Figure 5.7b: Average traffic reduction achieved by cities based on their revenue reinvestment

strategy

Figure 5.7b shows the average traffic reduction achieved by cities based on their revenue

reinvestment strategy:

- Cities that reinvest toll revenues into public transit and sustainable mobility, such as
Singapore, Stockholm, Milan, and New York, achieve a significantly higher average
traffic reduction of approximately 20%.

- In contrast, programs where revenue is diverted to general municipal budgets, such as in

London, San Diego, and Rome, yield a much lower average traffic reduction of just 6%.

This finding reinforces the argument that transit reinvestment strengthens both the equity and
effectiveness of congestion pricing, enabling better public alternatives that support behavioral

change and reduce road demand.

iv. Revenue Use: Transit Reinvestment vs. General Funds

How congestion pricing revenue is used fundamentally shapes the public legitimacy, equity
profile, and sustainability of the policy. When toll revenue is explicitly reinvested into public

transportation or non-motorized infrastructure, the system functions not just as a
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demand-management tool, but as a redistributive mechanism, transferring resources from drivers
toward the mobility needs of those who may be priced off the road. This approach aligns with
both economic theory and political economy. According to Anas (2020), in a general equilibrium
framework, congestion pricing yields the highest welfare gains when revenues are recycled into
complementary transport investments, especially those that mitigate the regressive effects of tolls

on lower-income travelers.

Cities that have earmarked revenue for transit reinvestment tend to see more durable success. In
Stockholm, congestion tax revenues are directed toward suburban transit expansion, which
helped generate modal alternatives that support long-term behavioral change. Borjesson and
Kristoffersson (2018) observe that this revenue structure improved public acceptance
post-implementation and was instrumental in shifting political opposition into consensus.
Similarly, Singapore reinvests ERP revenue into its extensive rail and bus systems, subsidizing
network expansion and service reliability in parallel with pricing. Theseira (2020) emphasizes
that the coordinated evolution of pricing and transit capacity was critical to ERP’s long-term

efficacy and public support.

In contrast, London’s congestion charge initially earmarked revenue for bus improvements and
cycling infrastructure. However, over time, as funds became more absorbed into general budgets
and the visibility of reinvestment faded, public trust in the system waned. Leape (2006) suggests
that the dilution of the reinvestment link weakened the charge’s redistributive appeal and
contributed to its reduced impact over time. The case of Rome, where enforcement and revenue
use were ambiguous, further highlights that a lack of transparency and reinvestment can erode

the legitimacy of even well-intentioned schemes.

Ultimately, the redistributive power of congestion pricing lies not just in the price mechanism but
in what is done with the money. When revenues are used for transit equity, environmental
investments, or service improvements, they can transform a regressive toll into a progressive

mobility intervention.
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Pre-Toll |Post-Toll Real 2025
Entrants/|Entrants| %] Revenue/Vehicle
City day /day Traffic Source for Vehicles (USD)
Transport for London: 27% drop in
2003 (nyc.streetsblog.org,
London |~102,000| ~89,000 | —12.7% classes.igpa.uiuc.edu) $6.86
Stockhol
m ~130,000 [~100,000| —23.1% Stockholm's trial cut 20-25% $2.47
Gothenb
urg |~170,000|~153,000{ —10.0% ~10% reduction in first year $4.58
Area C: Daily entries reported
Milan | 1,31,898 | 90,849 | -31.1% 2011, 2012 $0.71
Singapor ~270,000 ERP reductions of ~10%
e ~300,000| (-10%) | —-10% steady-state $0.20
538,955
New York| 5,83,000 | (-7.5%) | —7.5% MTA CRZ entries first week $9.78
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San ~850,000

Diego |~900,000]| (-5.6%) | —5.6% Caltrans/FHWA HOT-lane stats $0.14
Rome
(None) - - - No formal toll zone -

Table 5.3b: “Traffic Impact and Revenue Efficiency of Congestion Pricing (Selected Cities)”

Estimated Annual Revenue Per Vehicle Charged By City
New York | 9.78
London 6.85
Gothenburg 4.57
Stockholm 2.47
Milan | 0.71
San Diego | 0.14

Singapore  0.02

0 2 4 6 8 10
Revenue per Vehicle (USD)

Figure 5.8b: “Estimated Annual Revenue per vehicle charged by city”

Figure 5.8b presents a standardized comparison of estimated annual revenue per tolled vehicle
across major congestion pricing cities, offering insight into the fiscal intensity and policy design
of each system. This metric is calculated by dividing the real annual revenue (in 2025 USD) by
the estimated number of vehicles entering the zone daily, multiplied by 365 to annualize the

figure. The formula used is:
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Real Annual Revenue (USD)
Entrants per Dayx365

Annual Revenue Per Vehicle =

This normalized view reveals stark contrasts. Cities like New York ($9.78) and London ($6.85)
generate high revenue per vehicle, indicating aggressive pricing strategies with fewer exemptions
and broader enforcement. These systems prioritize both revenue generation and strong
disincentives for urban driving. On the other hand, cities such as Singapore ($0.02) and San
Diego ($0.14) operate low-intensity systems focused more on real-time congestion management
than revenue. The low per-vehicle returns in these cities reflect narrower toll zones, real-time

calibration, and broader exemption categories, particularly for public or essential vehicles.

By moving beyond raw revenue figures, this metric allows for a more precise economic and
policy evaluation. It underscores that higher revenue does not necessarily reflect greater
efficiency, it may signal higher burdens on users or a lack of adaptive design. This highlights the
importance of aligning pricing intensity with broader objectives, including equity, modal shift,

and public support.

v. Equity and Exemptions: Who Pays, Who Doesn’t

Equity remains one of the most contested dimensions of congestion pricing. Critics argue that
tolls are regressive, disproportionately affecting low-income drivers who may lack flexible work
hours or reliable public transit alternatives. However, the actual distributional impact of a
congestion pricing scheme depends not only on who pays, but also on how revenue is recycled,

what alternatives are provided, and who is exempted.

Eliasson and Mattsson (2005), in their evaluation of Stockholm’s trial and permanent program,
showed that once revenue reinvestment and behavioral adjustments were accounted for, the
system’s distributional effects were close to neutral, and in some cases progressive. Similarly,
Maheshwari et al. (2024) modeled congestion pricing in the San Francisco Bay Area and found
that pairing tolls with income-based transit subsidies or discounted tolls for low-income drivers
substantially improved equity outcomes without sacrificing efficiency. Their analysis
emphasized that means-tested exemptions or credits, rather than blanket exclusions, offer better

targeting without diluting traffic management outcomes.
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Exemptions, when poorly designed or politically overextended, can undermine both the fairness
and functionality of the system. London’s exemption of private hire vehicles (e.g., Uber)
contributed to increased vehicle volumes and worsened congestion, undercutting both
environmental goals and fairness. By contrast, Singapore’s ERP maintains minimal, narrowly
defined exemptions (emergency services, public buses) and instead focuses on offering
high-quality transit as a universal alternative. Theseira (2020) argues that this approach

strengthens system equity without compromising pricing integrity.

Equity must also be understood. In Gothenburg, opposition stemmed not only from income
concerns, but from the perception that suburban residents paid disproportionately despite limited
public transport options. Selmoune et al. (2022) note that such perceptions of unfairness, even if
not fully supported by data, can provoke political backlash. Thus, successful programs must
address both actual and perceived equity, through targeted exemptions, strong transit alternatives,

and visible reinvestment in underserved areas.

vi. Public Acceptance and Political Durability

Public acceptance is the political linchpin of any congestion pricing program. Even
well-designed systems can fail if they are seen as unfair, opaque, or unresponsive. By contrast,
policies with strong institutional support, transparent goals, and effective communication

strategies can not only survive initial resistance but evolve into politically resilient programs.

The clearest example of this dynamic is Stockholm, where a seven-month trial in 2006 was
followed by a binding referendum. Although support was initially low (only ~30% pre-trial), the
trial allowed the public to observe the benefits firsthand, reduced congestion, better travel times,
and cleaner air. Post-trial support rose above 50%, and the policy was permanently adopted.
Eliasson (2014) notes that the use of evidence, public outreach, and trial legitimacy were critical

to this turnaround.

By contrast, Gothenburg launched its congestion tax without a trial or referendum. Despite
technical similarity to Stockholm’s model, it faced broad opposition and was rejected in an
advisory vote. Borjesson and Kristoffersson (2018) argue that this was due less to the toll itself

than to perceptions of unfairness, lack of public involvement, and poor revenue transparency. In
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Rome, the absence of clear communication, enforcement, and reinvestment further undermined

the legitimacy of the ZTL, contributing to its failure to alter driving behavior meaningfully.

Perceived fairness, visibility of benefits, and clarity of purpose are essential for durability. Leape
(2006) found that support for London’s charge initially increased when bus services visibly
improved and travel times dropped, but faded when congestion crept back due to growing
exemptions and static pricing. In New York City, the 2025 cordon pricing program was framed
around clear goals, funding for the MTA, reduced congestion in Manhattan, and launched

alongside public awareness campaigns, building stronger early support.

Finally, Maheshwari et al. (2024) emphasize that administrative adaptability, the ability to tweak
toll levels, update exemptions, and respond to public feedback, is key to long-term legitimacy.
Durable systems treat public trust not as a given, but as something earned through continual

adjustment and transparent governance.

Pollutant Reduction (%) Across Cities Due to Congestion Pricing
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Figure 5.9b: “Pollutant Reduction (%) Across Cities Due to Congestion Pricing”

Note: There are no actual zeroes in this graph, if a bar is missing that means there is no data

regarding that pollutant.

40



The clustered bar chart illustrates pollutant-specific reductions achieved through congestion
pricing in eight global cities. The pollutants tracked include carbon dioxide (CO;), nitrogen
oxides (NOy), particulate matter (PM19 or PM,.5), and carbon monoxide (CO), where data was
available. Each city’s environmental impact is shown as a percentage decrease in urban pollution

attributed to its congestion pricing scheme.

Several trends emerge from the visualization. First, cities with longer-running and more
comprehensive programs, such as Stockholm, Singapore, Milan, and London, consistently show
multi-pollutant reductions. For example, Stockholm reports a 13% reduction in NOy and an 8%
decrease in PMj, likely due to its sustained investment in public transport and vehicle turnover
effects. Milan, whose policy is explicitly emissions-focused, has seen a 17% reduction in PM;,
and 10% in CO,. Singapore, combining road pricing with fuel standards, reports a 15% reduction

in CO; and significant drops in NOy and PM.s.

In contrast, San Diego, operating a narrower High-Occupancy Toll (HOT) lane system, shows a
more modest environmental profile, only a 5% CO; reduction, with no significant published data
on other pollutants. Rome is notably absent from the chart, not due to a lack of environmental
impact, but because no reliable pollutant-specific data is available. This reflects a broader issue

with transparency and reporting in some programs.

New York City, which launched its toll in 2025, is represented by projected rather than observed
reductions, indicated by lighter shading in the graph. Meanwhile, Gothenburg, despite political

challenges, reports solid environmental gains: a 7% drop in NOy and 5% in PM;.s.

This chart demonstrates that environmental benefits from congestion pricing are not uniformly
distributed. They depend heavily on program design, enforcement, and reinvestment strategies.
Cities that pair pricing with broader sustainability initiative, such as cleaner fleets and mass

transit improvements, tend to yield more robust, multi-dimensional pollution reductions.
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6. Deeper Drivers of Effectiveness: Elasticity, Adaptation, Equity, and Politics

a. Elasticity of Demand and Behavioral Response

The behavioral effectiveness of congestion pricing hinges on the price elasticity of demand for
road usage, a parameter that, in this context, is uniquely complex. Unlike typical private goods,
road access is rivalrous and excludable: a driver’s utility declines as more people use the same
space. Thus, conventional demand curves do not fully apply. When a toll is imposed, the private
cost of driving increases, but so does the travel-time benefit if others also reduce usage. This
creates a simultaneity problem: drivers are reacting not just to price, but to the broader system
response, including changes in congestion itself. In this framework, preferences — utility —

welfare are endogenous to how others behave, complicating both prediction and evaluation.

Empirical estimates reflect this complexity. In Stockholm, where robust public transit offers a
strong substitute, the elasticity of car travel was found to be between —0.25 and —0.5 during the
pilot phase and sustained into permanent adoption (Eliasson, 2008). This suggests a moderate
level of price sensitivity, enabled by a supportive multimodal infrastructure. In contrast, San
Diego’s HOT lanes show markedly inelastic demand among high-income commuters. As
Sullivan (2006) found, these users demonstrated a willingness to pay for uncongested travel
regardless of price changes, revealing how income bias and limited substitutes dampen the

behavioral response.

Singapore further illustrates how elasticity interacts with urban context. Despite being
technologically advanced, its ERP system yields relatively modest reductions in volume, partly
because its pricing is calibrated narrowly to manage flow rather than deter driving wholesale.
Moreover, elasticity is highly dependent on the availability of transit alternatives. When
substitutes exist, the elasticity of demand increases; where none are available, drivers must

absorb the toll regardless of its size.

These dynamics can be modeled, in theory, using a log-log functional form:
log(Q) = B, + B,log(P) + €
where:
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- Qt = quantity of traffic (e.g., cars per day) at time t

- Pt= toll price at time t

- B L= elasticity coefficient (how sensitive traffic is to changes in price)
- BO = intercept term (base level of traffic when price is 1)

- €= error term (captures variation not explained by price)

This equation tells us how much traffic volume changes when the toll price changes, using
percentages rather than raw numbers. For example, if the elasticity coefficient f1 is —0.4, then a
1% increase in the toll would lead to a 0.4% decrease in traffic volume, on average. But the
real-world situation is more complicated because raising tolls also reduces congestion, which can
make driving more attractive again. So, to truly measure elasticity, we’d also need to account for
changes in travel time or traffic conditions, not just price, making this equation harder to apply

without detailed traffic data.

b. Policy Feedback and Iterative Design

The effectiveness of a congestion pricing policy is not merely determined at launch, it is refined
over time through feedback, learning, and political adaptation. Among global models,
Singapore’s Electronic Road Pricing (ERP) system offers the clearest example of iterative policy
design. Every quarter, ERP rates are revised based on real-time traffic speeds, with the aim of
maintaining optimal flow levels (typically 20—30 km/h in city areas). This allows the policy to
stay responsive to evolving traffic patterns, seasonal fluctuations, and economic activity, rather

than remaining tethered to outdated assumptions.

Stockholm’s program similarly embodies adaptive governance. Initially implemented as a
6-month pilot in 2006, it was followed by a binding public referendum. Upon receiving majority
approval, the policy was institutionalized and expanded in 2007, with new pricing zones and rate
adjustments added later based on further evaluation. The success of this iterative approach lies in
its transparency and responsiveness: Stockholm adjusted both its technical parameters and its

political strategy over time.
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In contrast, London’s flat £15/day congestion charge has remained largely static. Although
initially effective, its real impact has eroded over time due to inflation, rising baseline traffic, and
unchanged boundaries. Meanwhile, Rome’s ZTL (Zona a Traffico Limitato) has suffered from
poor enforcement and limited revisions, causing public frustration and decreased compliance.
These comparisons highlight a key insight: congestion pricing is not a one-time intervention but
a continuous process of recalibration. Adaptive systems are more resilient to change and better

equipped to deliver sustained outcomes.

¢. Environmental vs. Congestion Objectives

While many congestion pricing schemes cite both traffic and environmental objectives, in
practice, the primary policy goal heavily influences design, implementation, and outcomes.
Singapore, for instance, centers its ERP policy explicitly on congestion management. Toll rates
are tied to real-time traffic speed, and policy success is measured by flow consistency rather than

pollution reduction. Environmental outcomes are secondary and largely incidental.

By contrast, Rome’s ZTL program was motivated by the need to reduce urban air pollution.
Targeted at curbing high-emission vehicles in the historic city center, it imposed restrictions on
older diesel cars and trucks. While Rome’s traffic volumes remained largely unchanged, the city
recorded modest declines in PM; and NOy, consistent with vehicle filtration rather than volume
control. Similarly, Milan’s Area C, which combines congestion pricing with emissions-based
vehicle restrictions, has produced strong dual benefits: a 17% reduction in PM;o and 22% in

CO,, alongside lower traffic volumes.

The key difference lies in instrument design. Congestion-focused policies tend to apply uniform
tolls and focus on time-of-day variation, with flow efficiency as the metric of success.
Emissions-focused policies, on the other hand, target vehicle types, offer discounts for electric
vehicles, or implement diesel bans. These policies often align with broader environmental

strategies, such as promoting electrification or integrating urban air quality goals.

The tension between these two objectives is not merely technical, it is political. Policymakers
must clearly define the primary goal and design accordingly. A system designed for flow will not

necessarily reduce emissions, and vice versa. Where possible, hybrid systems like Milan’s
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demonstrate that multiple objectives can be met, but only through careful alignment of pricing,

enforcement, and complementary investments in transit and clean mobility.

d. Political Economy and Public Acceptability

The most sophisticated pricing algorithm is powerless without political acceptance. The political
economy of congestion pricing, how it is introduced, communicated, and maintained, can
determine whether it succeeds, evolves, or collapses. In this regard, Stockholm offers a model of
success. The city launched its congestion pricing scheme as a time-limited trial in 2006, followed
by a referendum in which a majority voted in favor of making the policy permanent. The system
was expanded and refined over the next decade, supported by strong public transit investment
and transparent revenue use. Crucially, the public felt empowered and informed, which built

legitimacy and compliance.

In contrast, Rome’s ZTL was met with protests and deteriorated public trust. Despite a valid
environmental rationale, poor communication, inconsistent enforcement, and unclear benefits led
to low acceptance and eventual policy stagnation. New York City’s congestion pricing proposal,
though promising in design, has faced repeated delays due to legal challenges, lack of revenue
transparency, and insufficient community engagement, demonstrating how even well-designed

programs can be derailed by weak political foundations.

Across cases, the elements of successful political strategy are consistent: pilots to reduce
perceived risk, referendums to secure legitimacy, clear earmarking of toll revenue, and visible
reinvestment into public services. Messaging matters as well: programs framed around shared
gains, such as better commutes, cleaner air, or improved transit, fare better than those seen as
punitive. Congestion pricing must be viewed not as a tax, but as a tool for collective benefit.

Without public buy-in, even the most elegantly engineered pricing system will fail.

7. Modeling Behavioral Response Through Nested Decision Frameworks

Understanding how travelers respond to congestion pricing requires more than observing
changes in traffic volume, it requires examining how individuals make structured choices when

faced with cost, time, and alternatives. The Nested Logit Model (NLM) offers a powerful lens to
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unpack this decision-making process, particularly in urban transport systems where people

choose not only whether to travel but also how and by what means.

The NLM is built on the idea that people make choices in a stepwise, grouped way. For instance,
a commuter deciding how to get to work might first choose a mode of transport, such as car, bus,
or train, and only then decide which route or option within that mode is best. These decisions are
naturally nested: one’s route choice depends on their mode choice. What makes the NLM
especially useful is that it allows us to model this two-stage process, accounting for how the

presence and quality of alternatives shape sensitivity to tolls.

This is crucial in evaluating elasticity. In Stockholm, where the introduction of congestion
pricing was paired with a strong public transit system, many commuters switched modes
altogether. People weren’t just deciding whether to use a toll road, they were reconsidering
driving entirely. In the NLM framework, this reflects the availability of high-utility options in
competing nests, which increases elasticity and promotes behavioral shifts. In contrast, in San
Diego, drivers in HOT lanes often had no viable transit alternatives. Many continued paying
rising tolls because the inconvenience of switching outweighed the cost, demonstrating inelastic

demand and a dominance of the car-travel nest.

The model also sheds light on Singapore’s ERP system, which doesn’t try to shift people out of
driving entirely but instead encourages drivers to adjust when and where they travel. By using
precise, time-based tolling, Singapore’s approach nudges users toward less congested routes or
off-peak times. Here, the decision process stays within the same travel mode, and the NLM

captures the substitution within the car travel nest.

What sets this model apart is its ability to capture nuance: income, access to public transport,
personal time constraints, and trip purpose all affect how individuals navigate the decision tree.
For example, wealthier drivers might be less price-sensitive, while those with tight work

schedules may not find public transit feasible even if it’s cheaper.
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Figure 7.1: A conceptual flowchart showing that a commuter first chooses between driving
and public transport, and then within each, evaluates cost and time. Cities with strong
alternatives (like Stockholm) expand the transit branches, cities with limited options (like

San Diego) keep the tree skewed toward private vehicle use.

The Nested Logit Model (NLM) has become a widely adopted framework in transportation
economics and behavioral decision modeling primarily because it overcomes a critical limitation
of the standard Multinomial Logit Model (MNL): the “red bus/blue bus” problem. This issue
arises from the Independence of Irrelevant Alternatives (IIA) property in the MNL, which
assumes that the relative odds of choosing between two options remain unchanged when a third,
similar alternative is introduced. In reality, this is often not the case, if a traveler is deciding
between a red bus and a car, the sudden appearance of a blue bus (similar to the red one) should
increase the overall probability of taking a bus, not split the probability evenly between red and
blue, reducing both of their shares irrationally. The NLM corrects for this by grouping similar
alternatives into "nests," allowing for correlation in unobserved factors within each nest and
providing a more realistic representation of decision-making. In urban transport contexts, where
travelers often face hierarchically structured choices (mode first, then route or service level), the

NLM offers a more behaviorally accurate and policy-relevant tool than flat-choice models.

Ultimately, the Nested Logit Model provides a behavioral blueprint for understanding how

travelers respond to pricing, not as passive price-takers, but as strategic agents weighing
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complex, layered choices. By reflecting the real-world structure of decision-making, the model
gives policymakers a more accurate and equitable foundation for designing congestion pricing

systems that align with both travel behavior and public interest.

8. Results

The comparative analysis of global congestion pricing programs reveals robust, recurring
patterns in what drives long-term success. As synthesized in Figure 7.1, the most effective
programs, such as those in Singapore, Stockholm, and Milan, consistently perform well across
four outcome categories: traffic reduction, emission reduction, public support, and policy
longevity. These results reinforce the broader theoretical argument that congestion pricing is not
just a fiscal or technical tool, but a diverse policy mechanism that only succeeds when embedded

in broader systems of governance, infrastructure, and public legitimacy.

Another major finding is the decisive role of public legitimacy and revenue reinvestment.
Programs that clearly communicate benefits, especially through visible reinvestment into public
transit, are more likely to achieve and sustain public support. For instance, Stockholm launched
its congestion charge with a citywide pilot and held a referendum, ultimately gaining public
buy-in that has remained strong even after price increases and zone expansions. Its score of 4.3/5
in public support is not just a product of initial communication, but also of demonstrated
improvements in transit services and urban quality of life. Milan similarly gained public favor
after its Area C program produced dramatic improvements in air quality, 22% reduction in CO,
and 30% drop in vehicle entries, making the benefits immediately tangible. These cases show
that legitimacy is not just about persuasion, but about performance: when people see direct
benefits in their daily lives, they are more likely to support pricing policies that would otherwise

be unpopular.

The structure of the pricing system also shapes its effectiveness. Flexible, dynamic systems, such
as Singapore’s ERP and Stockholm’s time-of-day pricing, are more effective in aligning demand
with capacity, while static flat-rate charges (e.g., London) tend to lose potency over time.
Meanwhile, cities that combine pricing with vehicle-based restrictions, such as Milan’s
emission-tiered tolls or Rome’s (attempted) ZTL vehicle bans, show greater emissions impact

when effectively enforced. However, Rome’s low overall score across all outcomes (5% traffic
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reduction, 2% emissions improvement, 2.0/5 public support) highlights the dangers of poor
enforcement, limited transparency, and weak modal alternatives. Without these, even

emissions-based design fails to deliver meaningful impact.

Importantly, the results also highlight how infrastructure context and substitution options shape
elasticity and behavioral response. Stockholm and Milan both enjoy well-integrated public
transport systems, which allowed commuters to shift modes easily after pricing was introduced.
This supports the economic theory of elasticity discussed earlier: where substitutes exist, demand
becomes more elastic, and pricing becomes more effective in changing behavior. In contrast,
cities like San Diego, where HOT lanes were introduced without meaningful investment in

public transport, saw limited behavior change and regressive impacts on low-income users.

Effectiveness Summary by Outcome Type and City
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Figure 8.1 presents a heatmap comparing how eight cities performed across four key dimensions

of congestion pricing effectiveness:
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- Traffic Reduction (%)
- Emission Reduction (%)
- Public Support (converted to a 1-5 rating)

- Years Active (how long the policy has been in place)

Each row represents a city and each column represents an outcome dimension. The cells are
colored using a 0-to-1 normalized scale, which allows for visual comparison of cities on metrics
that have very different units (percentages, years, rating scores). The original (raw) values are

displayed inside each cell for accuracy and transparency.
The heatmap color intensity is based on a min-max normalization formula:

X— Min(X)
Max(X) — Min(X)

Normalised Value =

This rescales each column so that:

- The worst value in the column becomes 0
- The best value becomes 1

- All others fall proportionally in between
For example:

In the “Years Active” column, New York (0 years) = 0 (darkest), and Singapore (25 years) = 1
(lightest). In “Traffic Reduction,” Milan (30%) = 1, while Rome (5%) = 0.

This ensures each metric contributes equally to the visual representation, even though they’re on
different scales (years, %, ratings). To read the heatmap in Figure 14, scan each row to evaluate
how a city performs across four outcome area, traffic reduction, emissions reduction, public
support, and years active. The color intensity represents effectiveness, with lighter shades

indicating stronger performance and darker shades indicating weaker results. The raw values

inside each cell show the actual percentage or score, while the shading is based on a 0-to-1

normalized scale that adjusts for differences in units (e.g., % vs years). For example, Singapore’s
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row is consistently light, reflecting strong results across all metrics, while Rome’s row is dark,
signaling poor performance across the board. The columns allow you to compare how cities rank

in each individual metric, while the rows help identify which cities have well-rounded success.

Ultimately, this results section confirms the hypothesis that congestion pricing effectiveness is
multi-causal and interdependent. No single feature guarantees success. Rather, the most

successful cities share a blend of:

- Technical quality (dynamic pricing, emission-tiered design),
- Institutional stability (long-term political support, policy adaptation),
- Social credibility (public trust and revenue reinvestment), and

- Infrastructure complementarity (transit alternatives and urban design).

These insights should guide not only retrospective evaluation but also future policy planning,

especially in cities seeking to adopt or revamp congestion pricing programs in the years ahead

To deepen the comparative analysis and extract more generalizable insights from the panel
dataset, I conducted a series of statistical regressions using the compiled data across eight global
congestion pricing programs from 1991 to 2025. The primary objective was to evaluate how
factors such as income, time since policy implementation, and city-specific characteristics

influenced two critical outcomes: revenue per capita and traffic reduction.

Given that data coverage varied across cities and years, I applied interpolation to fill missing
observations for key variables such as annual revenue, traffic volume, and city-level economic
indicators. This approach allowed for a more consistent and complete panel, enabling the

application of fixed effects regressions and dynamic time analyses.
The following subsections present and interpret four key visual outputs:

Revenue per capita by city over time,
Dynamics of revenue growth post-implementation

Long-term patterns in traffic reduction, and

0 bh =

A hedonic regression identifying the predictors of per capita revenue.
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Together, these findings provide empirical support for the broader trends identified in the

qualitative case study analysis.
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Figure 8.2: Revenue per capita by city over time

To supplement this comparative illustration, I ran a panel data regression using interpolated
annual data for each city to better understand the broader, average dynamics at play. The
regression allows us to generalize beyond individual cities and examine patterns over time,

controlling for city-level fixed effects and variation in income, enforcement, and toll type.

The visualization reflects many of the trends that were later confirmed through the regression.
Figure 15 illustrates the evolution of annual congestion pricing revenue per capita in USD across
eight major cities, plotted against the number of years since each city implemented its congestion
pricing program. This graph provides a comparative view of how much revenue these programs
generate on a per-resident basis over time, highlighting not just fiscal performance but also

differences in design, enforcement, and scale.

The most immediately striking observation is Gothenburg’s position, with revenue per capita
consistently hovering around $185 to $195. This suggests a highly effective and rigorous tolling
system, likely supported by robust enforcement mechanisms, limited exemptions, and possibly
higher base tolls. In contrast, cities like Stockholm and London exhibit moderately high revenues

in the range of $30 to $45 per capita. Their slight downward trends over time may reflect
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growing exemptions, adjustments in policy to address political concerns, or behavioral

adaptations by drivers reducing toll volumes.

Singapore, Milan, and Rome cluster in the middle of the spectrum, with per capita revenues
ranging from $10 to $25. Singapore in particular shows a gradual upward trajectory in the early
years, which may be attributed to its adaptive, dynamic pricing model and regular policy
recalibrations. In contrast, Rome remains relatively flat, possibly a reflection of enforcement and

compliance challenges in its ZTL scheme.

At the lower end, San Diego and New York City show very minimal revenue per capita. In San
Diego’s case, this is expected due to the limited geographic scope of its HOT lane system and
relatively low toll rates. New York City, meanwhile, remains at the starting line in terms of
implementation, the low value reflects the absence of full system operation during the observed

period.

Overall, this figure underscores how significantly revenue outcomes can differ even among cities
with similar policy goals. These differences are shaped not only by toll levels and enforcement,
but also by broader institutional choices around system design. Importantly, as subsequent
figures will show, high revenue does not automatically translate into high effectiveness,
underscoring the need to evaluate congestion pricing on multiple dimensions beyond just fiscal

returns.
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Dynamics of congestion pricing revenue
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Figure 8.3: “Dynamics of congestion pricing revenue”

Figure 8.3 illustrates the dynamics of congestion pricing revenue per capita over a 20-year span,
using a panel regression model that averages data across all cities in the sample. The vertical axis
represents the logarithmic change in revenue per capita relative to the baseline year of
implementation, while the horizontal axis tracks the number of years since implementation. Each
blue dot corresponds to the estimated coefficient for a given year, and the vertical bars represent

95% confidence intervals for those estimates.

This figure offers a more nuanced, econometrically grounded view of revenue performance than
Figure 1, which simply displays raw trends by city. The regression controls for city fixed effects,
year fixed effects, and interpolated gaps in the data, allowing us to isolate the average effect of
time on revenue across varied policy environments. We see that revenue tends to grow steadily
over the first decade after implementation. For instance, the year-10 coefficient is approximately
0.12, meaning that, on average, cities earned 12% more per capita in congestion pricing revenue

ten years after implementation than they did in the first year.

The trend continues upward until around year 15, after which point revenue stabilizes or slightly

declines. This pattern suggests that congestion pricing systems may take time to mature, with
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early years marked by increasing compliance, improved collection systems, and policy
fine-tuning. Beyond year 15, saturation effects, driver adaptation, or policy softening may

explain the observed plateau.

Importantly, the widening of confidence intervals over time highlights increased uncertainty in
later years, partly due to fewer cities having programs old enough to contribute to those data
points. Nonetheless, the general takeaway is clear: congestion pricing revenue tends to rise
post-implementation and sustain at higher-than-baseline levels, providing strong fiscal

justification for such programs when designed and enforced consistently.

Dynamics of traffic reduction
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Figure 8.4: “Dynamics of traffic reduction”

Figure 8.4 captures the dynamics of traffic reduction following the implementation of congestion
pricing, using a similar regression framework as in the revenue analysis. The vertical axis
represents the average change in traffic volume, measured in percentage points, while the

horizontal axis indicates the number of years since each city adopted its congestion pricing
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policy. Each dot marks the estimated coefficient for a given year, and the vertical lines denote the

95% confidence intervals around these estimates.

This figure reveals a compelling yet somewhat counterintuitive trend: traffic reduction appears to
weaken over time. While the initial years of implementation show little to no change from the
baseline, the coefficients begin to turn negative after year 4, suggesting that the effectiveness of
congestion pricing in curbing traffic diminishes gradually. By year 10, traffic is approximately 1
percentage point higher than it was in the first year, holding all else equal. This trend becomes
more pronounced in later years, with the coefficient approaching -1.5 to —2 percentage points
after year 15, although with wider confidence intervals due to fewer observations at those longer

time horizons.

The regression controls for city and year fixed effects and is based on interpolated and
standardized panel data. The declining trend may reflect several underlying dynamics. One
possibility is behavioral adaptation; drivers may initially reduce car use in response to the toll,
only to revert back over time as they adjust their routines or as congestion pricing loses salience.
Another explanation could be policy backsliding, where enforcement weakens or toll rates fail to
keep pace with inflation and rising incomes. Additionally, as cities grow, general increases in

travel demand may offset early gains in traffic reduction.

While the trend is not dramatic in absolute terms, the implications are meaningful. It suggests
that congestion pricing is not a one-off fix but rather a policy that may require recalibration over
time, such as dynamic pricing, stricter enforcement, or complementary policies like improved

public transport, to sustain its effectiveness in reducing traffic volumes.
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Table 8.1 : Hedonic Regression Results - Determinants of Congestion Pricing Revenue per

Capita (Log-Transformed)

Dependent variable: log(revenue per capita); Robust standard errors in parentheses; Year fixed

effects included but not displayed.

(0
VARIABLES log revenuepercapita
log_income 0.758%**
(0.166)
log population -1.577%%*
(0.327)
London 2.317**
(0.890)
Milan -0.845%*
(0.327)
New York 2.844***
(0.851)
Rome -1.561**
(0.599)
San Diego -3.436%**
(0.306)
Singapore 1.030
(0.745)
Stockholm 0.552
(0.446)
1997 -0.00223
(0.0678)
1998 -0.147
(0.114)
1999 -0.123
(0.109)
2000 -0.114
(0.109)
2001 -0.0871
(0.0646)
2002 -0.0683
(0.0813)
2003 -0.0937
(0.0699)
2004 -0.0884
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(0.0795)

2005 -0.0919
(0.0856)
2006 -0.0604
(0.0812)
2007 -0.0529
(0.0955)
2008 -0.0494
(0.0829)
2009 -0.0408
(0.0981)
2010 -0.0394
(0.103)
2011 -0.0356
(0.102)
2012 -0.0228
(0.117)
2013 -0.00697
(0.0979)
2014 -0.00687
(0.113)
2015 -0.0111
(0.109)
2016 -0.0157
(0.108)
2017 0.000237
(0.120)
2018 0.00913
(0.107)
2019 0.00719
(0.134)
2020 -0.0324
(0.116)
2021 -0.0666
(0.104)
2022 -0.0350
(0.128)
2023 -0.0122
(0.112)
2024 0.0434
(0.159)
2025 0.0521
(0.107)
1.eventtime 0.0139
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(0.0669)

2.eventtime 0.0598
(0.0574)
3.eventtime 0.0672
(0.0563)
4.eventtime 0.0781
(0.0615)
5.eventtime 0.0889**
(0.0435)
6.eventtime 0.0959
(0.0600)
7.eventtime 0.117%**
(0.0469)
8.eventtime 0.124**
(0.0499)
9.eventtime 0.125%*
(0.0559)
10.eventtime 0.1271%**
(0.0394)
11.eventtime 0.131**
(0.0623)
12.eventtime 0.152%**
(0.0492)
13.eventtime (0.197%**
(0.0674)
14.eventtime 0.214%**
(0.0720)
15.eventtime 0.23]***
(0.0761)
16.eventtime 0.204**
(0.0865)
17.eventtime (0.195%**
(0.0638)
18.eventtime 0.194**
(0.0901)
19.eventtime 0.182**
(0.0697)
20.eventtime 0.193**
(0.0786)
21.eventtime 0.118
(0.0893)
22.eventtime 0.0575
(0.0879)
23.eventtime -0.0861
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(0.194)

24 .eventtime -0.0242
(0.127)
25.eventtime -0.00913
(0.140)
26.eventtime 0.0204
(0.115)
27.eventtime 0.0685
(0.0537)
28.eventtime 0.0101
(0.104)
290.eventtime -
Constant -3.804**
(1.871)
Observations 158
R-squared 0.997

Robust standard errors in parentheses
*H%k p<0.01, ** p<0.05, * p<0.1

This final table presents the results of a hedonic regression model that aims to identify the
determinants of congestion pricing revenue per capita across cities and over time. The dependent
variable is the log of revenue per capita, and the model includes a range of predictors, including
log income, log population, city fixed effects, event time (years since implementation), and year
fixed effects (which are included in the regression but not shown, since their coefficients are
uninformative in this context). This regression was conducted on an interpolated panel dataset
assembled from publicly available data and academic sources, with missing values filled through

linear interpolation where necessary to ensure a consistent time series for all cities.

One of the clearest findings from the model is the strong positive association between a city's
income level and its congestion pricing revenue. The coefficient on log income is 0.758 and
statistically significant at the 1% level, indicating that a 1% increase in income per capita is
associated with a 0.758% increase in revenue per capita. This aligns with the economic intuition
that wealthier populations may be less price-sensitive and more likely to absorb toll costs,

leading to higher total revenue.
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In contrast, the coefficient on log population is significantly negative (—1.577), suggesting that
larger cities collect less revenue per person. This could reflect a dilution effect where increased
population is not proportionally matched by higher toll collection, or it may indicate that larger
cities have more diverse commuting patterns and greater availability of substitutes like public

transit.

The city fixed effects are also telling. London and New York City exhibit strong positive effects
(2.317 and 2.844 respectively), implying much higher baseline revenues than the average city in
the dataset, even after accounting for income and population. This likely reflects both cities’
large commuting volumes and relatively robust enforcement and pricing systems. In contrast,
San Diego and Rome show negative effects (—3.436 and —1.561), suggesting far lower revenue
per capita than expected, which is consistent with known issues in enforcement, pricing strategy,

and system design in those cities.

The event time coefficients (years since implementation) show how revenue changes
dynamically over time. Consistent with Figure 2, the coefficients gradually rise and remain
statistically significant through years 15-20, suggesting that revenue per capita tends to grow in
the years after implementation. For example, the coefficient for year 15 is 0.231, meaning that,
all else equal, revenue per capita is about 23.1% higher 15 years after implementation compared
to the baseline year. This supports the earlier observation that pricing systems become more
efficient over time as compliance improves, vehicle fleets adjust, and administrative

infrastructure becomes more effective.

Together, these results underscore several important insights. First, income plays a major role in
shaping revenue outcomes, while population size may dampen per capita returns. Second, cities
differ widely in their effectiveness, as reflected in the fixed effects, suggesting that
implementation details, enforcement, and political buy-in matter greatly. And finally, the gradual
increase in revenue over time reinforces the idea that congestion pricing systems mature
administratively and behaviorally, leading to greater yield as they are institutionalized. These
findings provide robust, quantitative support for the descriptive trends observed in the
time-series figures and offer a statistically grounded view of what drives successful congestion

pricing revenue outcomes.
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9. Discussions/Limitations

While the comparative analysis in this paper reveals meaningful insights about what makes
congestion pricing effective, it is important to acknowledge the methodological and structural
limitations inherent in evaluating programs across different urban, political, and economic
contexts. Cities are not laboratories, and policy comparisons are rarely clean. Differences in data
availability, measurement standards, implementation timelines, and governance models introduce

noise and complexity that constrain how definitively we can draw causal conclusions.

First, there are temporal and geographic disparities in implementation. Singapore introduced its
pricing model in 1998 and has since evolved into a globally unique digital traffic management
platform. In contrast, Milan’s Area C began in 2012, and New York’s pricing scheme has yet to
be implemented. Comparing their effectiveness requires interpreting both immediate impacts and
long-term sustainability, something not all programs have had the time to demonstrate.
Meanwhile, Rome’s ZTL system, although technically “in place,” has seen enforcement weaken
and compliance drop, raising questions about how to treat programs that exist in name but not in
effect. The decision to include both ongoing and discontinued or stalled programs reflects an
attempt to examine not just outcomes but implementation dynamics, though it comes at the cost

of methodological consistency.

Secondly, the data types and collection standards vary significantly across cities. Some report
fine-grained traffic, emissions, and revenue data through public portals (e.g. Stockholm’s
transport authority), while others rely on academic case studies or government assessments with
less transparency (e.g. Rome, Gothenburg). This inconsistency affects the comparability of
outcomes like “emissions reduction” or “public support,” which may be based on surveys,
modeled projections, or indirect indicators. For example, New York’s expected emission
reductions are based on environmental assessments (MTA, 2023), whereas Milan’s were
observed and measured in ambient air quality monitors (Moulin & Urbano, 2015). These
differences necessitate careful interpretation, especially when integrating them into a common

visual scale, as done in Figure 7.1.

Beyond data challenges, there are theoretical limitations to meta-analysis in transport policy.

Each city’s program is embedded within a unique context: differences in urban density, modal
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alternatives, road networks, and travel behavior influence the way pricing is received and
internalized. The same pricing structure may produce vastly different outcomes depending on
whether a city has a legacy metro system (Stockholm), relies on cars for suburban-to-core
commuting (San Diego), or is politically fragmented (New York). This means that even strong
empirical similarities must be interpreted through a lens of contextual sensitivity, not as

universally transferable formulas.

Another underexplored dimension of congestion pricing is the potential for unintended social
consequences, particularly around equity and gentrification. While congestion pricing is often
justified as an economically efficient and environmentally progressive policy, its implementation
may inadvertently displace low-income populations, shift pollution to untolled neighborhoods, or
accelerate real estate speculation in areas with improved accessibility. Literature from urban
economics, particularly studies on neighborhood amenities and housing markets (e.g. Gyourko et
al., 2013), suggests that improved infrastructure can lead to rent increases and demographic
shifts, especially when not paired with affordable housing or equitable transit access. In London,
some studies have found that the congestion charge zone became more desirable, potentially
accelerating housing price increases and displacing less affluent residents. Similarly, equity
audits in U.S. cities like San Francisco have raised concerns that tolling without accompanying
subsidies or exemptions disproportionately impacts low-income and minority populations who

lack flexible commuting schedules or transit options.

These risks underscore the importance of equity-centered program design, including
sliding-scale tolls, targeted exemptions, and revenue reinvestment in underserved communities.
While cities like Stockholm and Singapore have taken steps in this direction, others, especially in

the U.S., have yet to embed these safeguards systematically.

Finally, this paper does not directly model long-term behavioral spillovers or second-order
effects, such as changes in employer policies, delivery patterns, or induced transit demand. These
dynamics may amplify or diminish the effects of pricing over time, and future research could
build on this work by integrating agent-based simulations, household travel surveys, or natural

experiments.
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10. Data Availability

The comparative analysis in this paper is based primarily on case study data drawn from
published reports, government documents, and peer-reviewed academic literature. The cities
included in this study, Singapore, London, Milan, Stockholm, Gothenburg, Rome, San Diego,
and New York, were selected based on the availability of multi-dimensional outcome data

including traffic volume, emissions, program duration, revenue, and public support.
The majority of the data were sourced from foundational case study publications such as:

- Bhatt (2010) for U.S. congestion pricing overviews including San Diego’s HOT lanes;

- Leape (2006) on the London congestion charge;

- Theseira (2020) for institutional and technical details of Singapore’s ERP system;

- Moulin & Urbano (2015) on Milan’s Area C scheme;

- Borjesson et al. (2012) and Eliasson (2008, 2014) on Stockholm’s congestion tax;

- Russo & Comi (2021) for Rome and Gothenburg;

- MTA Environmental Assessment (2023) for projected impacts of New York’s planned

pricing program.
These sources provided consistent metrics where available, including:

- Traffic volume reductions (often expressed as vehicle-kilometers traveled or change in
central zone entries),

- CO3, NOy, and PM; emissions reductions (via ambient monitoring or simulation),

- Toll revenue collected (where published),

- Modal shift patterns (changes in transit ridership or private car use),

- Policy longevity and political milestones, and

- Public support or opposition (from surveys, referenda, or protest data).

Where quantitative estimates were not directly provided, values were inferred from reported
trends or modeled outputs in the cited papers. All raw metrics were systematically entered into a

Microsoft Excel master sheet, which served as the central database for outcome comparisons and
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normalization (for Figure 7.1). Basic calculations, including min-max normalization, average

scores, and standardization, were conducted using Excel formulas.

No proprietary datasets or restricted-access archives were used in this study. While R or other
programming tools could support regression modeling or clustering analysis for future
extensions of this work, the current paper’s meta-analysis and synthesis were conducted using

manually compiled, citation-backed data points.

All sources are available via public academic databases, and the summary data table compiled

for this project can be shared upon request for reproducibility and transparency.

11. Conclusion

This paper has examined the design, implementation, and outcomes of congestion pricing
programs across eight global cities, drawing insights from case studies, theoretical models, and
comparative data analysis. The results point to several consistent patterns that define successful
programs. Cities such as Singapore, Stockholm, and Milan have achieved measurable and
sustained improvements in traffic flow, emissions reduction, and public acceptance, outcomes
that stem not only from their pricing design, but also from deeper institutional stability,

infrastructure integration, and policy legitimacy.

Key findings indicate that no single design feature guarantees success; rather, congestion pricing
works best when embedded within a broader framework of adaptive governance and urban
transport planning. Dynamic pricing structures, revenue reinvestment into public transport, and
strong feedback mechanisms are all associated with higher public support and longer program
lifespans. Moreover, the presence of substitution options, such as reliable public transit, greatly
enhances elasticity, making behavioral change more responsive to pricing signals. In contrast,
cities like Rome and New York illustrate how even well-intentioned policies can falter without

adequate enforcement, communication, or political consensus.

From a policy perspective, these findings underscore the importance of tailoring congestion
pricing schemes to the local urban structure, travel behavior, and governance environment. A

one-size-fits-all approach is unlikely to succeed. Cities with high car dependency and limited
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transit options must adopt supportive policies, such as improved bus service, park-and-ride
facilities, or subsidized alternatives, to ensure that pricing is not regressive. Programs that lack
flexibility, transparency, or visible public benefits risk facing backlash, legal delays, or policy

reversal.

Future research should continue to explore equity-centered designs, especially in low-income
contexts where congestion pricing can disproportionately affect marginalized communities. This
includes investigating tiered tolls, targeted exemptions, and direct redistribution of revenue to
affected households. In parallel, emerging technologies, such as Al-enabled dynamic pricing,
GPS-based vehicle tracking, and real-time emissions monitoring, offer promising tools for more
efficient and personalized congestion management. These technologies also present ethical and

data governance questions, which future studies must address.

In sum, congestion pricing is not simply a tool to reduce traffic, it is a test of urban governance,
policy design, and social contract. When designed holistically and implemented transparently, it
can reshape mobility patterns, promote sustainability, and finance better urban futures. But to do

s0, it must be more than a toll, it must be a strategy.
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